Aplikasi Mux - Demux : Smart Bathroom



Smarth Bathroom dengan Sensor Touch, Infrared, PIR, dan Jarak

1. Tujuan [Kembali]
  1. Mengetahui dan memahami aplikasi mux-demux

  2. Dapat menjelaskan prinsip kerja rangkaian aplikasi mux-demux yakni toilet otomatis

  3. Dapat membuat rangkaian aplikasi mux-demux

2. Alat dan Bahan [Kembali]
    A. ALAT
         Instrumen
         1) Voltmeter DC 

            Berikut adalah Spesifikasi dan keterangan Probe DC Volemeter

 

          Terminals Mode

         1) Power Suply

          Generator

         1) Baterai

    B. BAHAN
        1) Transistor NPN BC547

 

  2) Resistor

Spesifikasi:

  3) Dioda

  4Op-Amp 741

Spesifikasi dari IC UA741 meliputi berikut ini:

         Supply tegangan ±18V

         Perbedaan tegangan input daya adalah ±15V

         Rasio penolakan mode umum adalah 90dB

         Amplifikasi tegangan diferensial adalah 200V/mv

         Arus supply adalah 1.5mA

         Pin ini dapat diakses dalam berbagai paket seperti paket 8-Pin PDIP, VSSOP, & SOIC

5. Multiplexer 4052 

A. Spesifikasi
  • 4-Channel Mux and Demux
  • 4:1 Multiplexer IC
  • 1:4 Demultiplexer IC
  • Supports both Analog and Digital Voltage
  • Nominal Voltage: 5V, 10V, 15V
  • Maximum Operating Voltage: 20V
  • Propagation Delay: 400ns at 5V
  • Available in 16-pin PDIP, CDIP,SOIC, TSSOP packages

6. Demultiplexer 4052 

A. Spesifikasi
  • 4-Channel Mux and Demux
  • 4:1 Multiplexer IC
  • 1:4 Demultiplexer IC
  • Supports both Analog and Digital Voltage
  • Nominal Voltage: 5V, 10V, 15V
  • Maximum Operating Voltage: 20V
  • Propagation Delay: 400ns at 5V
  • Available in 16-pin PDIP, CDIP,SOIC, TSSOP packages



Komponen Input: 

1. Botton

Technical Specifications

  • Mode of Operation: Tactile feedback
  • Power Rating: MAX 50mA 24V DC
  • Insulation Resistance: 100Mohm at 100v
  • Operating Force: 2.55±0.69 N
  • Contact Resistance: MAX 100mOhm
  • Operating Temperature Range: -20 to +70 
  • Storage Temperature Range: -20 to +70 ℃

2. Sensor GP2D12

Spesifikasi :

• Analog output
• Effective Range: 10 to 80 cm
• LED pulse cycle duration: 32 ms
• Typical response time: 39 ms
• Typical start up delay: 44 ms
• Average current consumption: 33 mA
• Detection area diameter @ 80 cm: 6 cm

3. Touch sensor

4.       Sensor PIR

5. Sensor Infrared

6.Relay

Spesifikasi Relay:

7. Motor DC

 Spesifikasi item:

o   Tanpa kecepatan beban 12000 ± 15% rpm

o   Tidak ada arus beban =280mA

o   Tegangan operasi 1.5 - 9 VDC

o   Mulai Torsi =250g.cm (menurut blade yang dikembangkan sendiri)

o   mulai saat ini =5A

o   Resistansi Isolasi di atas 10O antara casing dan terminal DV 100V

o   Arah Rotasi CW: Terminal [+] terhubung ke catu daya positif, terminal [-] terhubung ke nagative

o   daya, searah jarum jam dianggap oleh arah poros keluaran

o   celah poros 0,05-0,35mm

8. IC Op Amp

9. Potensiometer


Komponen Output

1. Lampu

A. Spesifikasi :

- Higher lumen output: from 1850 lm to 4900 lm

- Almost constant lumen maintenance throughout the entire life of the lamp due to Luxline Plus triphosphor technology

- High colour rendering (Ra85/Class1B)

- For electronic ballast operation only giving greater efficiency and advantages in improved starting and life performance

- Optimised ambient operating temperature at 35° C (max lumen output) allows compact luminaire designs

- Reduced storage volume and transportation costs

- Average rated life: up to 20000 hours

2. LED-red dan LED-yellow

3. Motor DC

                Spesifikasi Motor DC

4. Relay

Spesifikasi:



3. Dasar Teori [Kembali]

1.Resistor

Resistor merupakan komponen pasif yang memiliki nilai resistansi tertentu dan berfungsi untuk menghambat jumlah arus listrik yang mengalir dalam suatu rangkaian. Resistor dapat diklasifikasikan menjadi beberapa jenis, diantaranya resistor nilai tetap (fixed resistor), resistor variabel (variabel resistor), thermistor, dan LDR.





Cara membaca nilai resistor

Cara menghitung nilai resistansi resistor dengan gelang warna :

1. Masukan angka langsung dari kode warna gelang pertama.

2. Masukan angka langsung dari kode warna gelang kedua.

3. Masukan angka langsung dari kode warna gelang ketiga.

 4. Masukkan jumlah nol dari kode warna gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10^n).

5. Gelang terakhir merupakan nilai toleransi dari resistor


2. Diode

Cara Kerja Dioda:

Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).

a. tanpa tegangan

Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. 

b. kondisi forward bias

Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif.

c. kondisi reverse bias

Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub.

3. Transistor

Transistor NPN

Pada transistor NPN, semikonduktor tipe-P diapit oleh dua semikonduktor tipe-N. Transistor NPN juga dapat dibentuk dengan menghubungkan anoda dari dua dioda sebagai base dan katoda sebagai kolektor dan emitor. Arus mengalir dari kolektor ke emitor karena potensial kolektor lebih besar daripada base dan emitor.

Transistor PNP

Pada transistor PNP, semikonduktor tipe-N diapit oleh dua semikonduktor tipe-P. Transistor PNP juga dapat dibentuk dengan menghubungkan katoda dari dua dioda sebagai base dan anoda sebagai kolektor dan emitor. Hubungan emitter-base foward bias sementara collector-base reverse bias. Jadi, arus mengalir dari emitor ke kolektor karena potensial emitor lebih besar daripada base dan kolektor.

Transistor sebagai saklar

Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titk jenuh (saturasi). Pada titk jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut-off sehingga tidak ada arus dari kolektor ke emitor. Nilai resistor terhubung ke base (Rb) dapat dihitung dengan;

Rb = Vbe / Ib

Transistor sebagai penguat

Transistor sebagai penguat jika bekerja dalam daerah aktif. Tegangan, arus, dan daya dapat diperkuat dengan beberapa konfigurasi seperti common emitter, common colector, dan common base.

DC Current Gain = Collector Current (Ic) / Base Current (Ib)

4. Multiplexer IC 4052

Multiplexer sering disebut sebagai Mux atau Mpx untuk mempermudah pengucapan. Komponen ini adalah susunan logika yang memiliki beberapa jalur input, kemudian memindahkannya pada sebuah jalur output saja. Rangkaian digital ini memiliki kecepatan sangat tinggi dalam meneruskan perintah yang sudah diseleksi dengan beberapa logika untuk dipindahkan ke satu jalur. Perintah berupa sinyal digital atau biner diubah menjadi sinyal analog menggunakan transistor untuk kemudian diteruskan ke proses selanjutnya.

Ø  Klasifikasi Multiplexer

  • 16-1 Multiplexer (4 Baris)
  • 8-1 Multiplexer (3 Baris)
  • 4-1 Multiplexer (2 Baris)
  • 2-1 Multiplexer (1 Baris)

Ø  Sirkuit Terpadu Multiplexing

IC NO.FUNGSIOUTPUT
74157Quad 2 : 1 MuxOutput sama dengan input yang dimasukkan
74158Quad 2 : 1 MuxOutput berlawanan dengan input
74153Dual 4 : 1 MuxOutput sama dengan input
74352Dual 4 : 1 MuxOutput berlawanan dengan input
741518 : 1 MuxOutput berlawanan dengan input
7415016 : 1 MuxOutput berlawanan dengan input

Apa Fungsi Multiplexer?

Seperti yang sudah dijelaskan di atas, bahwa multiplexer digunakan untuk menyeleksi data untuk kemudian dipindahkan ke satu jalur. Data tersebut diseleksi berdasarkan logika yang dipasangkan oleh operator itu sendiri. Penggunaan mux juga meningkatkan efisiensi transmisi data, sehingga menjadi jauh lebih cepat dibanding tidak menggunakannya.

ilustrasi sederhana cara kerja multiplexer
ilustrasi sederhana cara kerja multiplexer

Ada beberapa aplikasi Mux yang bisa Anda simak berikut ini:

1.      Sistem Komunikasi

Penggunaan komponen ini memungkinkan digunakannya sistem komunikasi, seperti stasiun Tributary, Relay, dan sistem transmisi, sehingga menjadi lebih cepat dan efisien. Tidak hanya itu, proses transmisi berbagai jenis data seperti audio dan video dapat digunakan bersamaan.

2.      Jaringan Telepon

Sinyal radio yang berasal dari berbagai perangkat akan diintegrasikan ke dalam satu jalur menggunakan multiplexer, kemudian signal tersebut diteruskan ke perangkat tujuan Anda.

3.      Hard Drive Komputer

Penggunaan multiplexer bertujuan untuk mengurangi jalur yang terhubung langsung dengan hard drive dengan komponen lain dalam komputer, agar penyimpanan bisa dilakukan dengan maksimal dan minim kesalahan.

4.      Transmisi Sistem Komputer Satelit

Mux juga digunakan untuk mentransmisikan data dari komputer satelit ke sistem di bumi menggunakan satelit GPS.


IC CD4052 adalah IC Multiplexer dan Demultiplexer tegangan tinggi berbasis CMOS. IC umumnya digunakan dalam rangkaian di mana MUX 4: 1 atau DEMUX 1: 4 diperlukan dalam Desain rangkaian Logika yang Dapat Diprogram. Ini dapat menangani tegangan analog dan digital sehingga dapat digunakan dalam konverter Analog ke Digital dan Digital ke Analog.

CD4052 as 4:1 Multiplexer:

    CD4052 dapat digunakan sebagai Multiplexer 4:1, yaitu dapat mengambil input dari 4-channel dan mengubahnya menjadi output saluran tunggal berdasarkan pin pilihan saluran. Dalam kasus kami empat saluran Input adalah X0Y0, X1Y1, X2Y2 dan X3 dan Y3 dan saluran output tunggal adalah X,Y. Output pada saluran tunggal ditentukan berdasarkan pin pilih saluran A dan B. Keadaan pin pilih dan pemilihan saluran ditunjukkan pada tabel di bawah ini:

A

B

Channel Selected

0

0

Channel 0

1

0

Channel 1

0

1

Channel 2

1

1

Channel 3

 The complete working of a 4:1 MUX using the CD4052 simulation is shown in the video below, the image here shows a snapshot of it.

CD4052 Multiplexer Circuit Diagram

Seperti yang Anda lihat pada gambar di atas, pin pemilihan saluran masing-masing adalah 1 dan 0 untuk A dan B. Artinya Saluran 1 yaitu X1 dan Y1 dipilih. Jadi input yang diberikan ke X1 dan Y1 direfleksikan pada pin X dan Y.

5. Demultiplexer IC 4052

Setelah memahami apa itu multiplexer, sebaiknya Anda memahami pula tentang apa itu demultiplexer. Sebab, kedua komponen ini kerap disandingkan dan saling berhubungan agar perintah yang dimasukkan oleh operator bisa diteruskan pada komponen komputer lainnya.


Pada komponen demultiplexer, terdapat satu jalur input dan banyak jalur output. Jalur input inilah yang akan dihubungkan dengan multiplexer.


Tanpa adanya kedua komponen tersebut, perintah yang dimasukkan oleh operator kemungkinan tidak berjalan dengan lancar, atau minimal sangat lambat. Dengan demikian, komponen itu diperlukan untuk meningkatkan efisiensi dan mengurangi kesalahan.

Ø  Klasifikasi Demultiplexer

  • 1-16 Demultiplexer (4 Baris)
  • 1-8   Demultiplexer (3 Baris)
  • 1-4   Demultiplexer (2 Baris)
  • 1-2   Demultiplexer (1 Baris)

Ø  Sirkuit Terpadu Demultiplexing

IC NO.FUNGSIOUTPUT
74139Dual 1 : 4 DemuxOutput berkebalikan dengan input
74156Dual 1 : 4 DemuxOutput merupakan open collector
741381 : 8 DemuxOutput berkebalikan dengan input
741541 : 16 DemuxOutput berkebalikan dengan input
741591 : 16 DemuxOutput merupakan open collector dan sama dengan input

Fungsi Demultiplexer

Seperti yang sudah Anda ketahui, bahwa Demultiplexer memiliki satu jalur transisi input dan beberapa jalur output. Jalur output tersebut biasanya langsung terhubung dengan komponen penting dalam komputer.


Dapat disimpulkan bahwa, data berbentuk seri yang berasal dari mux akan dikonstruksi ulang menjadi berbentuk paralel. Kemudian, perintah atau data tersebut diteruskan pada perangkat yang bersangkutan.


Berikut ini merupakan aplikasi dari demultiplexer:

· Sistem Komunikasi

Demultiplexer menerima data dari multiplexer dan mengubahnya menjadi bentuk semula untuk kemudian diteruskan ke komponen komputer yang bersangkutan. Contohnya adalah video, data berupa gambar akan dikirimkan ke monitor, sedangkan suara akan diteruskan ke pengeras suara.

· Arithmetic Logic Unit (ALU)

ALU merupakan microprocessor yang berfungsi untuk melakukan perhitungan. Pada bagian ini, demultiplexer menyimpan output dari ALU ke unit penyimpanan atau register.

Aritmethic Logic Unit
Aritmethic Logic Unit / John R. Southern @Flickr

Komponen multiplexer dan demultiplexer memiliki fungsi yang sangat krusial bagi perangkat komputer. Jika komponen penting ini di komputer Anda mengalami kerusakan, maka bagian lainnya tentu akan sangat terganggu. Bahkan, perintah sederhana seperti menyetel video sekalipun tidak akan terlaksana dengan baik.

CD4052 as 1:4 Demultiplexer:

    CD4052 dapat digunakan sebagai Demultiplexer 1:4 juga, yaitu dapat mengambil satu input dan menyediakan salah satu dari 4 saluran keluaran berdasarkan pin pilih saluran. Di sini pin input akan menjadi X dan Y. Pin output dapat berupa X0,Y0 atau X1,Y1 atau X2,Y2 atau X3,Y3 berdasarkan nilai yang ditetapkan pada pin A dan B. Kami telah membahas cara memilih saluran menggunakan pin A dan B pada tabel di atas.

CD4052 Demultiplexer Circuit Diagram

    Gambar di atas menunjukkan simulasi CD4052 dalam rangkaian demultiplexer, cara kerja lengkapnya dapat ditemukan di video yang ditautkan di bawah ini. Seperti yang Anda lihat di sini, saluran 2 dipilih dengan menjadikan A sebagai 0 dan B sebagai 1. Dan karenanya input yang diberikan ke pin X dan Y direfleksikan pada pin saluran 2 X2 dan Y2

JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika DasarJK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop. Rangkaian Dasar JK Flip-Flop JK flip-flop,teori jk flip-flop,fungsi jk flip flop,flip flop jk,rangkaian jk flip flop,dasar jk flip flop,truth table jk flip flop,jk ff,aplikasi jk flip-flop,manfaat jk flip-flop,kelebihan jk flip-flop,ic jk flip flop Gambar rangkaian diatas memperlihatkan salah satu cara untuk membangun sebuah flip-flop JK, J dan K disebut masukan pengendali karena menentukan apa yang dilakukan oleh flip-flop pada saat suatu pinggiran pulsa positif diberikan. Rangkaian RC mempunyai tetapan waktu yang sangat pendek, hal ini mengubah pulsa lonceng segiempat menjadi impuls sempit. Pada saat J dan K keduanya 0, Q tetap pada nilai terakhirnya. Pada saat J rendah dan K tinggi, gerbang atas tertutup, maka tidak terdapat kemungkinan untuk mengeset flip-flop. Pada saat Q adalah tinggi, gerbang bawah melewatkan pemicu reset segera setelah pinggiran pulsa lonceng positif berikutnya tiba. Hal ini mendorong Q menjadi rendah . Oleh karenanya J = 0 dan K=1 berarti bahwa pinggiran pulsa lonceng positif berikutnya akan mereset flip-flopnya. Pada saat J tinggi dan K rendah, gerbang bawah tertutup dan pada saat J dan K keduanya tinggi, kita dapat mengeset atau mereset flip-flopnya. Untuk lebih jelasnya daat dilihat pada tabel kebenaran JK flip-flop berikut. Tabel Kebenaran JK Flip-Flop CLK J K Q Keterangan 0 0 0 * Latch, kondisi terakhir ↑ 0 1 0 ↑ 1 0 1 ↑ 1 1 1 Latch, kondisi terakhir ↑ 1 1 0 Togle ↑ 1 1 1 Togle ↑ 1 1 0 Togle ↑ 0 0 0 Latch, kondisi terakhir ↑ 1 1 0 Latch, kondisi terakhir ↑ 1 1 1 Togle ↑ 1 1 0 Togle Selain dengan tabel kebenaran, dalam memahami karakteristik JK flip-flop seperti tabel diatas dapat dapat juga dipahami melalui timing diagram dari pemberian input kepada JK flip-flop seperti ditunjukan pada gambar berikut. Timing Diagram JK Flip-Flop Timing Diagram JK FF,diagram waktu jk flip flop Dari kedua penjelasan diatas (tabel kebenaran dan timing diagram) karakteristik JK flip-flop dapat kita pahami dengan cepat dan baik. Aplikasi JK flip-flop sering digunakan sebagai komponen utama suatu pencacah digital.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop. Rangkaian Dasar JK Flip-Flop JK flip-flop,teori jk flip-flop,fungsi jk flip flop,flip flop jk,rangkaian jk flip flop,dasar jk flip flop,truth table jk flip flop,jk ff,aplikasi jk flip-flop,manfaat jk flip-flop,kelebihan jk flip-flop,ic jk flip flop Gambar rangkaian diatas memperlihatkan salah satu cara untuk membangun sebuah flip-flop JK, J dan K disebut masukan pengendali karena menentukan apa yang dilakukan oleh flip-flop pada saat suatu pinggiran pulsa positif diberikan. Rangkaian RC mempunyai tetapan waktu yang sangat pendek, hal ini mengubah pulsa lonceng segiempat menjadi impuls sempit. Pada saat J dan K keduanya 0, Q tetap pada nilai terakhirnya. Pada saat J rendah dan K tinggi, gerbang atas tertutup, maka tidak terdapat kemungkinan untuk mengeset flip-flop. Pada saat Q adalah tinggi, gerbang bawah melewatkan pemicu reset segera setelah pinggiran pulsa lonceng positif berikutnya tiba. Hal ini mendorong Q menjadi rendah . Oleh karenanya J = 0 dan K=1 berarti bahwa pinggiran pulsa lonceng positif berikutnya akan mereset flip-flopnya. Pada saat J tinggi dan K rendah, gerbang bawah tertutup dan pada saat J dan K keduanya tinggi, kita dapat mengeset atau mereset flip-flopnya. Untuk lebih jelasnya daat dilihat pada tabel kebenaran JK flip-flop berikut. Tabel Kebenaran JK Flip-Flop CLK J K Q Keterangan 0 0 0 * Latch, kondisi terakhir ↑ 0 1 0 ↑ 1 0 1 ↑ 1 1 1 Latch, kondisi terakhir ↑ 1 1 0 Togle ↑ 1 1 1 Togle ↑ 1 1 0 Togle ↑ 0 0 0 Latch, kondisi terakhir ↑ 1 1 0 Latch, kondisi terakhir ↑ 1 1 1 Togle ↑ 1 1 0 Togle Selain dengan tabel kebenaran, dalam memahami karakteristik JK flip-flop seperti tabel diatas dapat dapat juga dipahami melalui timing diagram dari pemberian input kepada JK flip-flop seperti ditunjukan pada gambar berikut. Timing Diagram JK Flip-Flop Timing Diagram JK FF,diagram waktu jk flip flop Dari kedua penjelasan diatas (tabel kebenaran dan timing diagram) karakteristik JK flip-flop dapat kita pahami dengan cepat dan baik. Aplikasi JK flip-flop sering digunakan sebagai komponen utama suatu pencacah digital.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar

8. Logic State

status logika Pengertian logis, benar atau salah, dari sinyal biner yang diberikan. Sinyal biner adalah sinyal digital yang hanya memiliki dua nilai yang valid. Dalam istilah fisik, pengertian logis dari sinyal biner ditentukan oleh level tegangan atau nilai arus sinyal, dan ini pada gilirannya ditentukan oleh teknologi perangkat. Dalam sirkuit TTL, misalnya, keadaan sebenarnya diwakili oleh logika 1, kira-kira sama dengan +5 volt pada garis sinyal; logika 0 kira-kira 0 volt. Tingkat tegangan antara 0 dan +5 volt dianggap tidak ditentukan.

6.Sensor GP2D12


Sensor GP2D12 adalah sensor jarak analog yang menggunakan infrared untuk mendeteksi jarak antara 10 cm sampai 80 cm. GP2D12 mengeluarkan output voltase non linear dalam hubungannya dalam jarak objek dari sensor dan menggunakan interface analog to digital converter (ADC) Spesifikasi Teknis:

.a. Range 10 – 80 cm

 b. Update frequency/ period 25 Hz / 40ms

 c. power supply voltage 4.5 – 5.5 V

 d. Noise on analog output < 200mV

 e. Mean consumtion 35 mA

 Kelemahan:

a.    Respon 40ms

b.    Error bila jarak <10cm dan pada cermin

c.    Hanya dapat mengukur <80 cm

 Kelebiahan:

a.    Dapat mengukur jarak pada bidang miring

b.    Sudut pengukuran sempit

c.    Sangat direktif

Berikut Grafik respon  anatara jarak dan deteksi objek terhadap output analog sensor

7. Sensor touch

Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Seiring dengan perkembangan teknologi, sensor sentuh ini semakin banyak digunakan dan telah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik.

Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.

Sensor  Sentuh Kapasitif

Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.

Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.

Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.

Sensor Sentuh Resistif

Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.

 Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).

 Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.

Grafik Respon Sensor Touch:

8.       Sensor PIR

Sensor PIR (Passive Infra Red) adalah sensor yang digunakan untuk mendeteksi adanya pancaran sinar infra merah. Sensor PIR bersifat pasif, artinya sensor ini tidak memancarkan sinar infra merah tetapi hanya menerima radiasi sinar infra merah dari luar. Sensor ini biasanya digunakan dalam perancangan detektor gerakan berbasis PIR. Karena semua benda memancarkan energi radiasi, sebuah gerakan akan terdeteksi ketika sumber infra merah dengan suhu tertentu (misal: manusia) melewati sumber infra merah yang lain dengan suhu yang berbeda (misal: dinding), maka sensor akan membandingkan pancaran infra merah yang diterima setiap satuan waktu, sehingga jika ada pergerakan maka akan terjadi perubahan pembacaan pada sensor. Sensor PIR terdiri dari beberapa bagian yaitu :

a. Lensa Fresnel

Lensa Fresnel pertama kali digunakan pada tahun 1980an. Digunakan sebagai lensa yang memfokuskan sinar pada lampu mercusuar. Penggunaan paling luas pada lensa Fresnel adalah pada lampu depan mobil, di mana mereka membiarkan berkas parallel secara kasar dari pemantul parabola dibentuk untuk memenuhi persyaratan pola sorotan utama. Namun kini, lensa Fresnel pada mobil telah ditiadakan diganti dengan lensa plain polikarbonat. Lensa Fresnel juga berguna dalam pembuatan film, tidak hanya karena kemampuannya untuk memfokuskan sinar terang, tetapi juga karena intensitas cahaya yang relative konstan diseluruh lebar berkas cahaya.

b. IR Filter

IR Filter dimodul sensor PIR ini mampu menyaring panjang gelombang sinar infrared pasif antara 8 sampai 14 mikrometer, sehingga panjang gelombang yang dihasilkan dari tubuh manusia yang berkisar antara 9 sampai 10 mikrometer ini saja yang dapat dideteksi oleh sensor. Sehingga Sensor PIR hanya bereaksi pada tubuh manusia saja.

c. Pyroelectric Sensor

Seperti tubuh manusia yang memiliki suhu tubuh kira-kira 32˚C, yang merupakan suhu panas yang khas yang terdapat pada lingkungan. Pancaran sinar inframerah inilah yang kemudian ditangkap oleh Pyroelectric sensor yang merupakan inti dari sensor PIR ini sehingga menyebabkan Pyroelectic sensor yang terdiri dari galium nitrida, caesium nitrat dan litium tantalate menghasilkan arus listrik. Mengapa bisa menghasilkan arus listrik? Karena pancaran sinar inframerah pasif ini membawa energi panas. Material pyroelectric bereaksi menghasilkan arus listrik karena adanya energi panas yang dibawa oleh infrared pasif tersebut. Prosesnya hampir sama seperti arus listrik yang terbentuk ketika sinar matahari mengenai solar cell.

d. Amplifier

Sebuah sirkuit amplifier yang ada menguatkan arus yang masuk pada material pyroelectric.

e. Komparator

Setelah dikuatkan oleh amplifier kemudian arus dibandingkan oleh komparator sehingga mengahasilkan output.

Hampir semua jenis sensor PIR akan memiliki spesifikasi memiliki perbedaan, meskipun semuanya memiliki cara kerja yang sama. Dapat cek perbedaan tersebut dalam datasheet.

·         Ukuran : Persegi

·         Output : Nilai Digital High (3V) saat dipicu (gerakan terdeteksi), dan nilai digital Low saat menganggur (tidak ada gerakan terdeteksi). Panjang pulsa ditentukan oleh resistor dan kapasitor pada PCB.

·         Jangkauan sensitivitas : sampai 20 kaki (6 meters) 110 derajat x 70 derajat jangkauan deteksi

·         Power supply: 3.3V - 5V tegangan input.

Pada grafik tersebut ; (a) Arah yang berbeda mengasilkan tegangan yang bermuatan berbeda ; (b) Semakin dekat jarak objek terhadap sensor PIR, maka semakin besar tegangan output yang dihasilkan ; (c) Semakin cepat objek bergerak, maka semakin cepat terdeteksi oleh sensor PIR karena infrared yang ditimbulkan dengan lebih cepat oleh objek semakin mudah dideteksi oleh PIR, namun semakin sedikit juga waktu yang dibutuhkan karena sudah diluar jangkauan sensor PIR.

 

Dari grafik, didapatkan bahwa suhu juga mempengaruhi seberapa jauh PIR dapat mendeteksi adanya infrared dimana semakin tinggi suhu disekitar maka semakin pendek jarak yang bisa diukur oleh PIR.

9. Sensor Infrared

Infrared (IR) detektor atau sensor infra merah adalah komponen elektronika yang dapat mengidentifikasi cahaya infra merah (infrared, IR). Sensor infra merah atau detektor infra merah saat ini ada yang dibuat khusus dalam satu modul dan dinamakan sebagai IR Detector Photomodules. IR Detector Photomodules merupakan sebuah chip detektor inframerah digital yang di dalamnya terdapat fotodiode dan penguat (amplifier). Bentuk dan Konfigurasi Pin IR Detector Photomodules TSOP.

Konfigurasi pin infra red (IR) receiver atau penerima infra merah tipe TSOP adalah output (Out), Vs (VCC +5 volt DC), dan Ground (GND). Sensor penerima inframerah TSOP ( TEMIC Semiconductors Optoelectronics Photomodules ) memiliki fitur-fitur utama yaitu fotodiode dan penguat dalam satu chip, keluaran aktif rendah, konsumsi daya rendah, dan mendukung logika TTL dan CMOS. Detektor infra merah atau sensor inframerah jenis TSOP (TEMIC Semiconductors Optoelectronics Photomodules) adalah penerima inframerah yang telah dilengkapi filter frekuensi 30-56 kHz, sehingga penerima langsung mengubah frekuensi tersebut menjadi logika 0 dan 1. Jika detektor inframerah (TSOP) menerima frekuensi carrier tersebut, maka pin keluarannya akan berlogika 0. Sebaliknya, jika tidak menerima frekuensi carrier tersebut, maka keluaran detektor inframerah (TSOP) akan berlogika 1.

Dari grafik dapat disimpilkan bahwa semakin jauh jarak benda maka semakin kecil output nya, dan begitu juga sebaliknya.

Dari grafik dapat disimpulkan bahwa semakin tinggi intensitass cahaya maka semakin rendah nilai resistansi dan sebaliknya.

Grafik Respon Sensor Infrared:

 

Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.  

10. Relay

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.

Ada besi atau yang disebut dengan nama inti besi dililit oleh sebuah kumparan yang berfungsi sebagai pengendali.  Sehingga kumparan kumparan yang diberikan arus listrik maka akan menghasilkan gaya elektromagnet.  Gaya tersebut selanjutnya akan menarik angker untuk pindah dari biasanya tutup ke buka normal.  Dengan demikian saklar menjadi pada posisi baru yang biasanya terbuka yang dapat menghantarkan arus listrik.  Ketika armature sudah tidak dialiri arus listrik lagi maka ia akan kembali pada posisi awal, yaitu normal close.

Fitur:

1. Tegangan pemicu (tegangan kumparan) 5V

2. Arus pemicu 70mA

3. Beban maksimum AC 10A @ 250 / 125V

4. Maksimum baban DC 10A @ 30 / 28V

5. Switching maksimum

11. Motor DC

Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti

Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.

12. Lampu


Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor.

13. IC OP AMP 

Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.

b. Inverting dan non inverting amplifier



Op-Amp memiliki beberapa karakteristik, diantaranya:

a. Penguat tegangan tak berhingga (AV = )

b. Impedansi input tak berhingga (rin = )

c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = )

d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)

Grafik input dan output op amp

14. Battery

Spesifikasi battery : 12 V

Baterai adalah perangkat yang terdiri dari satu atau lebih sel elektrokimia dengan koneksi eksternal yang disediakan untuk memberi daya pada perangkat listrik seperti senter, ponsel, dan mobil listrik. Ketika baterai memasok daya listrik, terminal positifnya adalah katode dan terminal negatifnya adalah anoda. Terminal bertanda negatif adalah sumber elektron yang akan mengalir melalui rangkaian listrik eksternal ke terminal positif. Ketika baterai dihubungkan ke beban listrik eksternal, reaksi redoks mengubah reaktan berenergi tinggi ke produk berenergi lebih rendah, dan perbedaan energi-bebas dikirim ke sirkuit eksternal sebagai energi listrik. Secara historis istilah "baterai" secara khusus mengacu pada perangkat yang terdiri dari beberapa sel, namun penggunaannya telah berkembang untuk memasukkan perangkat yang terdiri dari satu sel. Kutub yang bertanda positif menandakan bahwa memiliki energi potensial yang lebih tinggi daripada kutub bertanda negatif. Kutub bertanda negatif adalah sumber elektron yang ketika disambungkan dengan rangkaian eksternal akan mengalir dan memberikan energi ke peralatan eksternal. Ketika baterai dihubungkan dengan rangkaian eksternal, elektrolit dapat berpindah sebagai ion didalamnya, sehingga terjadi reaksi kimia pada kedua kutubnya. Perpindahan ion dalam baterai akan mengalirkan arus listrik keluar dari baterai sehingga menghasilkan kerja. Meski sebutan baterai secara teknis adalah alat dengan beberapa sel, sel tunggal juga umumnya disebut baterai.

15. Transistor NPN

Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Transistor dapat berfungsi semacam kran listrik, di mana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya. Kapasitor NPN memiliki simbol seperti gambar di bawah ini:
Simbol Transistor NPN BC547


Terdapat rumus rumus dalam mencari transistor seperti rumus di bawah ini:

Rumus dari Transitor adalah :

hFE = iC/iB

dimana, iC = perubahan arus kolektor 

iB = perubahan arus basis 

hFE = arus yang dicapai


Rumus dari Transitor adalah :

Karakteristik Input

Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.

Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.

 Pemberian bias 
        Ada beberapa macam rangkaian pemberian bias, yaitu: 
 1. Fixed bias yaitu, arus bias IB didapat dari VCC yang dihubungkan ke kaki B melewati tahanan R seperti gambar 58. Karakteristik Output.


2.Self Bias adalah arus input didapatkan dari pemberian tegangan input VBB seperti gambar 60.


Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.

Gelombang I/O Transistor
                    
16. OP-AMP


Simbol 
 
Berfungsi sebagai penguat atau pembanding tegangan input dengan output.

 

 

Karakteristik IC OpAmp

  • Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
  • Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
  • Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
  • Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
  • Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
  • Karakteristik tidak berubah dengan suhu
                                                                           

Karakteristik IC OpAmp

  • Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
  • Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
  • Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
  • Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
  • Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
  • Karakteristik tidak berubah dengan suhu

Inverting Amplifier


 Rumus:

NonInverting

 Rumus:

Komparator

Rumus:

Adder

Rumus:

Bentuk Gelombang


4. Percobaan [Kembali]

A. prosedur percobaan

1. Siapkan semua alat dan bahan yang diperlukan

2. Disarankan agar membaca datasheet setiap komponen

3. Cari komponen yang diperlukan di library proteus

4. Rangkailah Rangkaian sesuai dengan gambar dibawah

5. jika ingin mensimulasikan jangan lupa masukkan libarary sensor 

6. Coba dijalankan rangkaian apabila ouput hidup/berputar (motor dc) maka rangkaian bisa digunakan


B. Rangkaian Simulasi


Jika seseorang ingin memasuki toilet dan berada di dekat pintu toilet, maka sensor pir yang ada di dekat pintu akan mendeteksi keberadaaan orang tersebut atau berlogika 1, sehigga sensor aktif, maka arus dari power supply akan diteruskan ke kaki Vcc sensor, kaki Vout sensor, dan arus diteruskan ke IC multiplexer 4052. Jika kondisi pada input selektif multiplexer A dan inh dihubungkan ke groound, dan B dihubungkan ke power supply, maka output multiplexer akan diambil dari input X2 dan Y2, kemudian dari output X arus diteruskan ke demultiplexer dan arus akan dikecilkan di resistor 10k, tegangan pada basis transistor terbaca sebesar + 0,78 volt. Tegangan tersebut cukup untuk mengaktifkan transistor. Transistor aktif maka akan memicu arus dari power supply, arus melewati relay menuju kaki kolektor transistor, menuju kaki emitor transistor dan arus diteruskan ke ground. Dengan adanya arus pada relay menyebabkan saklar pada relay berpindah posisi yang menyebabkan loop menjadi tertutup, sehingga motor dc aktif dan akan menggerakkan pintu dan pintu terbuka.

Setelah orang tersebut masuk, maka di dekat pintu dalam toilet terdapat sensor infrared yang aktif setelah orang tersebut berada didekat sensor. Sensor infrared aktif, maka arus dari power supply akan diteruskan ke kaki Vcc sensor, kaki Vout sensor, dan arus diteruskan ke IC multiplexer 4052. Jika kondisi pada input selektif multiplexer A dan inh dihubungkan ke groound, dan B dihubungkan ke power supply, maka output multiplexer akan diambil dari input X2 dan Y2, kemudian dari output X arus diteruskan ke demultiplexer dan arus akan dikecilkan di resistor 10k, tegangan pada basis transistor terbaca sebesar + 0,79 volt. Tegangan tersebut cukup untuk mengaktifkan transistor. Transistor aktif maka akan memicu arus dari power supply, arus melewati relay menuju kaki kolektor transistor, menuju kaki emitor transistor dan arus diteruskan ke ground. Dengan adanya arus pada relay menyebabkan saklar pada relay berpindah posisi yang menyebabkan loop menjadi tertutup, sehingga motor dc aktif dan akan menggerakkan pintu dan pintu tertutup. Output dari sensor infrared juga menghidupkan lampu yang ada dalam toilet.

Setelah orang tersebut berada dalam toilet dan berjalan menuju kloset, maka di dekat kloset terdapat sensor jarak yang mana sensor tersebut akan aktif jika jarak dari sensor ke objek yaitu kurang atau sama dengan 36 cm. Setelah sensor aktif, maka arus dari power supply akan diteruskan keluar dari kaki Vout sensor kemudian menuju detector, pada detector, penguatan yang dihasilan adalah tegangan pada kaki non inverting dikurang dengan tegangan pada kaki inverting kemudian dikali dengan Aol. Dan pada output detector terbaca tegangan yaitu sebesar +13,9 V. Kemudian arus dari detector akan diteruskan menuju multiplexer. Kemudian dari output Y arus diteruskan ke demultiplexer dan arus akan dikecilkan di resistor 10k, tegangan pada basis transistor terbaca sebesar + 0,86 volt. Tegangan tersebut cukup untuk mengaktifkan transistor. Transistor aktif maka akan memicu arus dari power supply, arus melewati relay menuju kaki kolektor transistor, menuju kaki emitor transistor dan arus diteruskan ke ground. Dengan adanya arus pada relay menyebabkan saklar pada relay berpindah posisi yang menyebabkan loop menjadi tertutup, sehingga motor dc aktif dan akan menggerakkan penutup kloset dan kloset terbuka.

Setelah orang tersebut selesai, maka terdapat sensor touch di dekat kloset yang akan memepermudah untuk membersihkan dan menutup penutup kloset. Jika sensor touch aktif, maka maka arus dari power supply akan diteruskan ke kaki Vcc sensor, kaki Vout sensor, dan arus diteruskan ke IC multiplexer 4052. Jika kondisi pada input selektif multiplexer A dan inh dihubungkan ke ground, dan B dihubungkan ke power supply, maka output multiplexer akan diambil dari input X2 dan Y2, kemudian dari output Y arus diteruskan ke demultiplexer dan arus akan dikecilkan di resistor 10k, tegangan pada basis transistor terbaca sebesar + 0,79 volt. Tegangan tersebut cukup untuk mengaktifkan transistor. Transistor aktif maka akan memicu arus dari power supply, arus melewati relay menuju kaki kolektor transistor, menuju kaki emitor transistor dan arus diteruskan ke ground. Dengan adanya arus pada relay menyebabkan saklar pada relay berpindah posisi yang menyebabkan loop menjadi tertutup, sehingga motor dc aktif dan akan menggerakkan penutup kloset dan kloset tertutup dan motor dc yang lain akan menggerakkan pembersih untuk membersihkan kloset.

C. Video
1. Merangkai Rangkaian

2. Menjelaskan Prinsip Kerja Rangkaian

5. Download File [Kembali]
   
    Download HTML klik disini
    Download rangkaian Simulasi proteus klik disini
    Download video Merangkai Rangkaian klik disini
    Download video Menjelaskan Rangkaian klik disini
    Download Datasheet Resistor klik disini
    Download Datasheet Dioda klik disini
    Download Datasheet Relay klik disini
    Download Datasheet Transistor klik disini
    Download Datasheet LED klik disini
    Download Datasheet Lampu klik disini
    Download Datasheet Motor klik disini
    Download Datasheet OP-AMP klik disini
    Download Datasheet Baterai klik disini
    Download Datasheet Multiplexer IC 4052 klik disini
    Download Datasheet Demultiplexer IC 4052 klik disini
    Download Datasheet Touch sensor klik disini
    Download Datasheet PIR sensor klik disini
    Download Datasheet Infrared sesor klik disini
    Download Datasheet Sensor Jarak klik disini
    Download Library Touch sensor  klik disini
    Download Library PIR sensor klik disini
    Download Library Infrared sesor klik disini

Komentar

Postingan populer dari blog ini

TUGAS BESAR: KONTROL TANAMAN BAYAM PADA GREEN HOUSE

MODUL 1 : 8 x SWITCH SPDT DAN LCD

MODUL 2 : Kontrol Putaran Motor Stepper