Tugas Besar : Kontrol Hidroponik Kangkung Dirumah Tanaman



Kontrol Kelembaban Hidroponik Kangkung Dirumah Tanaman dengan Sensor Touch, Soil Mosture, PIR, LM35 dan LDR

1. Tujuan [Kembali]
  1. Dapat mengetahui bentuk rangkaian dari kontrol kelembapan tanah

  2. Dapat menjelaskan prinsip kerja rangkaian tugas besar yaknkontrol hidroponik kangkung dirumah tanaman

  3. Dapat membuat rangkaian tugas besar

2. Alat dan Bahan [Kembali]
    A. ALAT
         Instrumen
         1) Voltmeter DC 

            Berikut adalah Spesifikasi dan keterangan Probe DC Volemeter

          Terminals Mode

         1) Power Suply

          Generator

         1) Baterai

    B. BAHAN
        1) Transistor NPN BC547

 

         Spesifikasi dan konfigurasi pin:



  2) Resistor

Spesifikasi:


  3) Dioda


  4Op-Amp 741

Spesifikasi dari IC UA741 meliputi berikut ini:

         Supply tegangan ±18V

         Perbedaan tegangan input daya adalah ±15V

         Rasio penolakan mode umum adalah 90dB

         Amplifikasi tegangan diferensial adalah 200V/mv

         Arus supply adalah 1.5mA

         Pin ini dapat diakses dalam berbagai paket seperti paket 8-Pin PDIP, VSSOP, & SOIC


5) Multiplexer 4052 

A. Spesifikasi
  • 4-Channel Mux and Demux
  • 4:1 Multiplexer IC
  • 1:4 Demultiplexer IC
  • Supports both Analog and Digital Voltage
  • Nominal Voltage: 5V, 10V, 15V
  • Maximum Operating Voltage: 20V
  • Propagation Delay: 400ns at 5V
  • Available in 16-pin PDIP, CDIP,SOIC, TSSOP packages

6. Demultiplexer 4052 

A. Spesifikasi
  • 4-Channel Mux and Demux
  • 4:1 Multiplexer IC
  • 1:4 Demultiplexer IC
  • Supports both Analog and Digital Voltage
  • Nominal Voltage: 5V, 10V, 15V
  • Maximum Operating Voltage: 20V
  • Propagation Delay: 400ns at 5V
  • Available in 16-pin PDIP, CDIP,SOIC, TSSOP packages


Komponen Input: 

1. Botton

Technical Specifications

  • Mode of Operation: Tactile feedback
  • Power Rating: MAX 50mA 24V DC
  • Insulation Resistance: 100Mohm at 100v
  • Operating Force: 2.55±0.69 N
  • Contact Resistance: MAX 100mOhm
  • Operating Temperature Range: -20 to +70 
  • Storage Temperature Range: -20 to +70 ℃

2. Sensor Soil Moisture

Spesifikasi: 


 3. Sensor LM35


4. Touch sensor


4.       Sensor PIR

5. Sensor LDR

Spesifikasi:

·         Tegangan maksimum (DC): 150V

·         Konsumsi arus maksimum: 100mW

·         Tingkatan Resistansi/Tahanan : 10Ω sampai 100KΩ

·         Puncak spektral: 540nm (ukuran gelombang cahaya)

·         Waktu Respon Sensor : 20ms – 30ms

·         Suhu operasi: -30° Celsius – 70° Celcius.


6. D flip-flop (IC 7474)

6.Relay

Spesifikasi Relay:

7. Motor DC

 Spesifikasi item:

o   Tanpa kecepatan beban 12000 ± 15% rpm

o   Tidak ada arus beban =280mA

o   Tegangan operasi 1.5 - 9 VDC

o   Mulai Torsi =250g.cm (menurut blade yang dikembangkan sendiri)

o   mulai saat ini =5A

o   Resistansi Isolasi di atas 10O antara casing dan terminal DV 100V

o   Arah Rotasi CW: Terminal [+] terhubung ke catu daya positif, terminal [-] terhubung ke nagative

o   daya, searah jarum jam dianggap oleh arah poros keluaran

o   celah poros 0,05-0,35mm

8. IC Op Amp

9. Potensiometer


Komponen Output

1. Lampu

A. Spesifikasi :

- Higher lumen output: from 1850 lm to 4900 lm

- Almost constant lumen maintenance throughout the entire life of the lamp due to Luxline Plus triphosphor technology

- High colour rendering (Ra85/Class1B)

- For electronic ballast operation only giving greater efficiency and advantages in improved starting and life performance

- Optimised ambient operating temperature at 35° C (max lumen output) allows compact luminaire designs

- Reduced storage volume and transportation costs

- Average rated life: up to 20000 hours


2. LED-red dan LED-yellow

3. Motor DC

                Spesifikasi Motor DC

4. Relay


Spesifikasi:




3. Dasar Teori [Kembali]

1.Resistor

Resistor merupakan komponen pasif yang memiliki nilai resistansi tertentu dan berfungsi untuk menghambat jumlah arus listrik yang mengalir dalam suatu rangkaian. Resistor dapat diklasifikasikan menjadi beberapa jenis, diantaranya resistor nilai tetap (fixed resistor), resistor variabel (variabel resistor), thermistor, dan LDR.





Cara membaca nilai resistor

Cara menghitung nilai resistansi resistor dengan gelang warna :

1. Masukan angka langsung dari kode warna gelang pertama.

2. Masukan angka langsung dari kode warna gelang kedua.

3. Masukan angka langsung dari kode warna gelang ketiga.

 4. Masukkan jumlah nol dari kode warna gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10^n).

5. Gelang terakhir merupakan nilai toleransi dari resistor


2. Diode

Cara Kerja Dioda:

Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).

a. tanpa tegangan

Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. 

b. kondisi forward bias

Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif.

c. kondisi reverse bias

Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub.

3. Transistor

Transistor NPN

Pada transistor NPN, semikonduktor tipe-P diapit oleh dua semikonduktor tipe-N. Transistor NPN juga dapat dibentuk dengan menghubungkan anoda dari dua dioda sebagai base dan katoda sebagai kolektor dan emitor. Arus mengalir dari kolektor ke emitor karena potensial kolektor lebih besar daripada base dan emitor.

Transistor PNP

Pada transistor PNP, semikonduktor tipe-N diapit oleh dua semikonduktor tipe-P. Transistor PNP juga dapat dibentuk dengan menghubungkan katoda dari dua dioda sebagai base dan anoda sebagai kolektor dan emitor. Hubungan emitter-base foward bias sementara collector-base reverse bias. Jadi, arus mengalir dari emitor ke kolektor karena potensial emitor lebih besar daripada base dan kolektor.

Transistor sebagai saklar

Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titk jenuh (saturasi). Pada titk jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut-off sehingga tidak ada arus dari kolektor ke emitor. Nilai resistor terhubung ke base (Rb) dapat dihitung dengan;

Rb = Vbe / Ib

Transistor sebagai penguat

Transistor sebagai penguat jika bekerja dalam daerah aktif. Tegangan, arus, dan daya dapat diperkuat dengan beberapa konfigurasi seperti common emitter, common colector, dan common base.

DC Current Gain = Collector Current (Ic) / Base Current (Ib)


JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika DasarJK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop. Rangkaian Dasar JK Flip-Flop JK flip-flop,teori jk flip-flop,fungsi jk flip flop,flip flop jk,rangkaian jk flip flop,dasar jk flip flop,truth table jk flip flop,jk ff,aplikasi jk flip-flop,manfaat jk flip-flop,kelebihan jk flip-flop,ic jk flip flop Gambar rangkaian diatas memperlihatkan salah satu cara untuk membangun sebuah flip-flop JK, J dan K disebut masukan pengendali karena menentukan apa yang dilakukan oleh flip-flop pada saat suatu pinggiran pulsa positif diberikan. Rangkaian RC mempunyai tetapan waktu yang sangat pendek, hal ini mengubah pulsa lonceng segiempat menjadi impuls sempit. Pada saat J dan K keduanya 0, Q tetap pada nilai terakhirnya. Pada saat J rendah dan K tinggi, gerbang atas tertutup, maka tidak terdapat kemungkinan untuk mengeset flip-flop. Pada saat Q adalah tinggi, gerbang bawah melewatkan pemicu reset segera setelah pinggiran pulsa lonceng positif berikutnya tiba. Hal ini mendorong Q menjadi rendah . Oleh karenanya J = 0 dan K=1 berarti bahwa pinggiran pulsa lonceng positif berikutnya akan mereset flip-flopnya. Pada saat J tinggi dan K rendah, gerbang bawah tertutup dan pada saat J dan K keduanya tinggi, kita dapat mengeset atau mereset flip-flopnya. Untuk lebih jelasnya daat dilihat pada tabel kebenaran JK flip-flop berikut. Tabel Kebenaran JK Flip-Flop CLK J K Q Keterangan 0 0 0 * Latch, kondisi terakhir ↑ 0 1 0 ↑ 1 0 1 ↑ 1 1 1 Latch, kondisi terakhir ↑ 1 1 0 Togle ↑ 1 1 1 Togle ↑ 1 1 0 Togle ↑ 0 0 0 Latch, kondisi terakhir ↑ 1 1 0 Latch, kondisi terakhir ↑ 1 1 1 Togle ↑ 1 1 0 Togle Selain dengan tabel kebenaran, dalam memahami karakteristik JK flip-flop seperti tabel diatas dapat dapat juga dipahami melalui timing diagram dari pemberian input kepada JK flip-flop seperti ditunjukan pada gambar berikut. Timing Diagram JK Flip-Flop Timing Diagram JK FF,diagram waktu jk flip flop Dari kedua penjelasan diatas (tabel kebenaran dan timing diagram) karakteristik JK flip-flop dapat kita pahami dengan cepat dan baik. Aplikasi JK flip-flop sering digunakan sebagai komponen utama suatu pencacah digital.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop. Rangkaian Dasar JK Flip-Flop JK flip-flop,teori jk flip-flop,fungsi jk flip flop,flip flop jk,rangkaian jk flip flop,dasar jk flip flop,truth table jk flip flop,jk ff,aplikasi jk flip-flop,manfaat jk flip-flop,kelebihan jk flip-flop,ic jk flip flop Gambar rangkaian diatas memperlihatkan salah satu cara untuk membangun sebuah flip-flop JK, J dan K disebut masukan pengendali karena menentukan apa yang dilakukan oleh flip-flop pada saat suatu pinggiran pulsa positif diberikan. Rangkaian RC mempunyai tetapan waktu yang sangat pendek, hal ini mengubah pulsa lonceng segiempat menjadi impuls sempit. Pada saat J dan K keduanya 0, Q tetap pada nilai terakhirnya. Pada saat J rendah dan K tinggi, gerbang atas tertutup, maka tidak terdapat kemungkinan untuk mengeset flip-flop. Pada saat Q adalah tinggi, gerbang bawah melewatkan pemicu reset segera setelah pinggiran pulsa lonceng positif berikutnya tiba. Hal ini mendorong Q menjadi rendah . Oleh karenanya J = 0 dan K=1 berarti bahwa pinggiran pulsa lonceng positif berikutnya akan mereset flip-flopnya. Pada saat J tinggi dan K rendah, gerbang bawah tertutup dan pada saat J dan K keduanya tinggi, kita dapat mengeset atau mereset flip-flopnya. Untuk lebih jelasnya daat dilihat pada tabel kebenaran JK flip-flop berikut. Tabel Kebenaran JK Flip-Flop CLK J K Q Keterangan 0 0 0 * Latch, kondisi terakhir ↑ 0 1 0 ↑ 1 0 1 ↑ 1 1 1 Latch, kondisi terakhir ↑ 1 1 0 Togle ↑ 1 1 1 Togle ↑ 1 1 0 Togle ↑ 0 0 0 Latch, kondisi terakhir ↑ 1 1 0 Latch, kondisi terakhir ↑ 1 1 1 Togle ↑ 1 1 0 Togle Selain dengan tabel kebenaran, dalam memahami karakteristik JK flip-flop seperti tabel diatas dapat dapat juga dipahami melalui timing diagram dari pemberian input kepada JK flip-flop seperti ditunjukan pada gambar berikut. Timing Diagram JK Flip-Flop Timing Diagram JK FF,diagram waktu jk flip flop Dari kedua penjelasan diatas (tabel kebenaran dan timing diagram) karakteristik JK flip-flop dapat kita pahami dengan cepat dan baik. Aplikasi JK flip-flop sering digunakan sebagai komponen utama suatu pencacah digital.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar

8. Logic State

status logika Pengertian logis, benar atau salah, dari sinyal biner yang diberikan. Sinyal biner adalah sinyal digital yang hanya memiliki dua nilai yang valid. Dalam istilah fisik, pengertian logis dari sinyal biner ditentukan oleh level tegangan atau nilai arus sinyal, dan ini pada gilirannya ditentukan oleh teknologi perangkat. Dalam sirkuit TTL, misalnya, keadaan sebenarnya diwakili oleh logika 1, kira-kira sama dengan +5 volt pada garis sinyal; logika 0 kira-kira 0 volt. Tingkat tegangan antara 0 dan +5 volt dianggap tidak ditentukan.

2. Sensor Soil Moisture

Soil Moisture Sensor merupakan module untuk mendeteksi kelembaban tanah, yang dapat diakses menggunakan microcontroller seperti arduino.Sensor kelembaban tanah ini dapat dimanfaatkan pada sistem pertanian, perkebunan, maupun sistem hidroponik mnggunakan hidroton.

Soil Moisture Sensor dapat digunakan untuk sistem penyiraman otomatis atau untuk memantau kelembaban tanah tanaman secara offline maupun online. Sensor yang dijual pasaran mempunyai 2 module dalam paket penjualannya, yaitu sensor untuk deteksi kelembaban, dan module elektroniknya sebagai amplifier sinyal.




Jika menggunakan pin Digital Output maka keluaran hanya bernilai 1 atau 0 dan harus inisalisasi port digital sebagai Input (pinMode(pin, INPUT)). Sedangkan jika menggunkan pin Analog Output maka keluaran yang akan muncul adalah sebauah angka diantara 0 sampai 1023 dan inisialisasi hanya perlu menggunkan analogRead(pin).

CARA KERJA SENSOR

Pada saat diberikan catudaya dan disensingkan pada tanah, maka nilai Output Analog akan berubah sesuai dengan kondisi kadar air dalam tanah.



Pada saat kondisi tanah :

  • Basah : tegangan output akan turun
  • Kering : tegangan output akan naik

Tegangan tersebut dapat dicek menggunakan voltmeter DC. Dengan pembacaan pada pin ADC pada microcontroller dengan tingkat ketelitian 10 bit, maka akan terbaca nilai dari range 0 – 1023. Sedangkan untuk Output Digital dapat diliat pada nyala led Digital output menyala atau tidak dengan mensetting nilai ambang pada potensiometer.

  •  Kelembaban tanah melebihi dari nilai ambang maka led akan padam
  •  Kelembaban tanah kurang dari nilai ambang maka led akan menyala
Response of soil water sensors to varying levels of soil organic matter...  | Download Scientific Diagram 
Characteristics of Real-time Soil Moisture Monitoring Sites and Sensor... |  Download Table 

 3. Sensor LM35

Sensor suhu LM35 adalah komponen elektronika yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. Sensor Suhu LM35 yang dipakai dalam penelitian ini berupa komponen elektronika elektronika yang diproduksi oleh National Semiconductor. LM35 memiliki keakuratan tinggi dan kemudahan perancangan jika dibandingkan dengan sensor suhu yang lain, LM35 juga mempunyaikeluaran impedansi yang rendah dan linieritas yang tinggi sehingga dapat dengan mudah dihubungkan dengan rangkaian kendali khusus serta tidak memerlukan penyetelan lanjutan.


IC LM 35 ini tidak memerlukan pengkalibrasian atau penyetelan dari luar karena ketelitiannya sampai lebih kurang seperempat derajat celcius pada temperature ruang. Jangka sensor mulai dari – 55°C sampai dengan 150°C, IC LM35 penggunaannya sangat mudah, difungsikan sebagai kontrol dari indicator tampilan catu daya terbelah. IC LM 35 dapat dialiri arus 60 Î¼ A dari supplay sehingga panas yang ditimbulkan sendiri sangat rendah kurang dari 0 ° C di dalam suhu ruangan. Untuk mendeteksi suhu digunakan sebuah sensor suhu LM35 yang dapat dikalibrasikan langsung dalam C (celcius), LM35 ini difungsikan sebagai basic temperature sensor. 


Prinsip Kerja LM35 :
Sensor LM35 bekerja dengan mengubah besaran suhu menjadi besaran tegangan. Tegangan ideal yang keluar dari LM35 mempunyai perbandingan 100°C setara dengan 1 volt. Sensor ini mempunyai pemanasan diri (self heating) kurang dari 0,1°C, dapat dioperasikan dengan menggunakan power supply tunggal dan dapat dihubungkan antar muka (interface) rangkaian control.

Sensor suhu LM35 mampu melakukan pengukuran suhu dari suhu -55ºC hingga +150ºC dengan toleransi kesalahan pengukuran ±0.5ºC.

Dilihat dari tipenya range suhu dapat dilihat sebagai berikut :
  • LM35, LM35A -> range pengukuran temperature  -55ºC hingga +150ºC.
  • LM35C, LM35CA -> range pengukuran temperature -40ºC hingga +110ºC.
  • LM35D -> range pengukuran temperature 0ºC hingga +100ºC. 
Kelebihan LM 35 :
  • Rentang suhu yang jauh, antara -55 sampai +150ºC
  • Low self-heating, sebesar 0.08 ºC
  • Beroperasi pada tegangan 4 sampai 30 V
  • Tidak memerlukan pengkondisian sinyal
Kekurangan LM 35:
  • Membutuhkan tegangan untuk beroperasi.

Grafik:


·         Kalibrasi dalam satuan derajat celcius.

·         Lineritas +10 mV/ º C.

·         Akurasi 0,5 º C pada suhu ruang.

·         Range +2 º C – 150 º C.

·         Dioperasikan pada catu daya 4 V – 30 V.

·         Arus yang mengalir kurang dari 60 Î¼A.


  • Sensor LDR



LDR (Light Dependent Resistor) merupakan salah satu komponen resistor yang nilai resistansinya akan berubah-ubah sesuai dengan intensitas cahaya yang mengenai sensor ini. LDR juga dapat digunakan sebagai sensor cahaya.


Spesifikasi:

·         Tegangan maksimum (DC): 150V

·         Konsumsi arus maksimum: 100mW

·         Tingkatan Resistansi/Tahanan : 10Ω sampai 100KΩ

·         Puncak spektral: 540nm (ukuran gelombang cahaya)

·         Waktu Respon Sensor : 20ms – 30ms

·         Suhu operasi: -30° Celsius – 70° Celcius.




                Grafik Respon:


7. Sensor touch

Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Seiring dengan perkembangan teknologi, sensor sentuh ini semakin banyak digunakan dan telah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik.

Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.

Sensor  Sentuh Kapasitif

Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.

Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.

Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.

Sensor Sentuh Resistif

Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.

 Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).

 Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.

Grafik Respon Sensor Touch:

8.       Sensor PIR

Sensor PIR (Passive Infra Red) adalah sensor yang digunakan untuk mendeteksi adanya pancaran sinar infra merah. Sensor PIR bersifat pasif, artinya sensor ini tidak memancarkan sinar infra merah tetapi hanya menerima radiasi sinar infra merah dari luar. Sensor ini biasanya digunakan dalam perancangan detektor gerakan berbasis PIR. Karena semua benda memancarkan energi radiasi, sebuah gerakan akan terdeteksi ketika sumber infra merah dengan suhu tertentu (misal: manusia) melewati sumber infra merah yang lain dengan suhu yang berbeda (misal: dinding), maka sensor akan membandingkan pancaran infra merah yang diterima setiap satuan waktu, sehingga jika ada pergerakan maka akan terjadi perubahan pembacaan pada sensor. Sensor PIR terdiri dari beberapa bagian yaitu :

a. Lensa Fresnel

Lensa Fresnel pertama kali digunakan pada tahun 1980an. Digunakan sebagai lensa yang memfokuskan sinar pada lampu mercusuar. Penggunaan paling luas pada lensa Fresnel adalah pada lampu depan mobil, di mana mereka membiarkan berkas parallel secara kasar dari pemantul parabola dibentuk untuk memenuhi persyaratan pola sorotan utama. Namun kini, lensa Fresnel pada mobil telah ditiadakan diganti dengan lensa plain polikarbonat. Lensa Fresnel juga berguna dalam pembuatan film, tidak hanya karena kemampuannya untuk memfokuskan sinar terang, tetapi juga karena intensitas cahaya yang relative konstan diseluruh lebar berkas cahaya.

b. IR Filter

IR Filter dimodul sensor PIR ini mampu menyaring panjang gelombang sinar infrared pasif antara 8 sampai 14 mikrometer, sehingga panjang gelombang yang dihasilkan dari tubuh manusia yang berkisar antara 9 sampai 10 mikrometer ini saja yang dapat dideteksi oleh sensor. Sehingga Sensor PIR hanya bereaksi pada tubuh manusia saja.

c. Pyroelectric Sensor

Seperti tubuh manusia yang memiliki suhu tubuh kira-kira 32˚C, yang merupakan suhu panas yang khas yang terdapat pada lingkungan. Pancaran sinar inframerah inilah yang kemudian ditangkap oleh Pyroelectric sensor yang merupakan inti dari sensor PIR ini sehingga menyebabkan Pyroelectic sensor yang terdiri dari galium nitrida, caesium nitrat dan litium tantalate menghasilkan arus listrik. Mengapa bisa menghasilkan arus listrik? Karena pancaran sinar inframerah pasif ini membawa energi panas. Material pyroelectric bereaksi menghasilkan arus listrik karena adanya energi panas yang dibawa oleh infrared pasif tersebut. Prosesnya hampir sama seperti arus listrik yang terbentuk ketika sinar matahari mengenai solar cell.

d. Amplifier

Sebuah sirkuit amplifier yang ada menguatkan arus yang masuk pada material pyroelectric.

e. Komparator

Setelah dikuatkan oleh amplifier kemudian arus dibandingkan oleh komparator sehingga mengahasilkan output.

Hampir semua jenis sensor PIR akan memiliki spesifikasi memiliki perbedaan, meskipun semuanya memiliki cara kerja yang sama. Dapat cek perbedaan tersebut dalam datasheet.

·         Ukuran : Persegi

·         Output : Nilai Digital High (3V) saat dipicu (gerakan terdeteksi), dan nilai digital Low saat menganggur (tidak ada gerakan terdeteksi). Panjang pulsa ditentukan oleh resistor dan kapasitor pada PCB.

·         Jangkauan sensitivitas : sampai 20 kaki (6 meters) 110 derajat x 70 derajat jangkauan deteksi

·         Power supply: 3.3V - 5V tegangan input.

Pada grafik tersebut ; (a) Arah yang berbeda mengasilkan tegangan yang bermuatan berbeda ; (b) Semakin dekat jarak objek terhadap sensor PIR, maka semakin besar tegangan output yang dihasilkan ; (c) Semakin cepat objek bergerak, maka semakin cepat terdeteksi oleh sensor PIR karena infrared yang ditimbulkan dengan lebih cepat oleh objek semakin mudah dideteksi oleh PIR, namun semakin sedikit juga waktu yang dibutuhkan karena sudah diluar jangkauan sensor PIR.

 

Dari grafik, didapatkan bahwa suhu juga mempengaruhi seberapa jauh PIR dapat mendeteksi adanya infrared dimana semakin tinggi suhu disekitar maka semakin pendek jarak yang bisa diukur oleh PIR.

Multiplexer 4052 

A. Spesifikasi
  • 4-Channel Mux and Demux
  • 4:1 Multiplexer IC
  • 1:4 Demultiplexer IC
  • Supports both Analog and Digital Voltage
  • Nominal Voltage: 5V, 10V, 15V
  • Maximum Operating Voltage: 20V
  • Propagation Delay: 400ns at 5V
  • Available in 16-pin PDIP, CDIP,SOIC, TSSOP packages
B. Pin Configuration

Pin Number

Pin Name

Description

16

Vdd

Positive power input, maximum 20V

7

Vee

Negative power rail, normally connected to ground.

8

Vss (Ground)

Connected to ground of the circuit 

6

INH

Enable pin – Must be pulled to ground for normal operation

9,10

A,B

Channel Select pins

1,12

Y0,X0

Channel 0 Input / Output

5,14

Y1,X1

Channel 1 Input / Output

2,15

Y2,X2

Channel 2 Input / Output

4,11

Y3,X3

Channel 3 Input / Output

3,13

Y,X

Common Output / Input

Tabel Kebenaran IC 4052

6. Demultiplexer 4052 

A. Spesifikasi
  • 4-Channel Mux and Demux
  • 4:1 Multiplexer IC
  • 1:4 Demultiplexer IC
  • Supports both Analog and Digital Voltage
  • Nominal Voltage: 5V, 10V, 15V
  • Maximum Operating Voltage: 20V
  • Propagation Delay: 400ns at 5V
  • Available in 16-pin PDIP, CDIP,SOIC, TSSOP packages

B. Pin Configuration

Pin Number

Pin Name

Description

16

Vdd

Positive power input, maximum 20V

7

Vee

Negative power rail, normally connected to ground.

8

Vss (Ground)

Connected to ground of the circuit 

6

INH

Enable pin – Must be pulled to ground for normal operation

9,10

A,B

Channel Select pins

1,12

Y0,X0

Channel 0 Input / Output

5,14

Y1,X1

Channel 1 Input / Output

2,15

Y2,X2

Channel 2 Input / Output

4,11

Y3,X3

Channel 3 Input / Output

3,13

Y,X

Common Output / Input


Tabel Kebenaran IC 4052

D flip-flop (IC 7474)


Data flip-flop merupakan pengembangan dari RS flip-flop, pada D flip-flop kondisi output terlarang (tidak tentu) tidak lagi terjadi. Data flip-flop sering juga disebut dengan istilah D-FF sehingga lebih mudah dalampenyebutannya. Data flip-flop merupakan dasar dari rangkaian utama sebuah memori penyimpan data digital. Input atau masukan pada RS flip-flop adalah 2 buah yaitu R (reset) dan S (set), kedua input tersebut dimodifikasi sehingga pada Data flip-flop menjadi 1 buah input saja yaitu input atau masukan D (data) saja. Model modifikasi RS flip-flopmenjadi D flip-flop adalah dengan penambahan gerbang NOT (Inverter) dari input S ke input R pada RS flip-flop seperti telihat pada gambar dasar D flip-flop berikut. 

Gambar Rangkaian Dasar D Flip-Flop.

 

Pada gambar diatas input Set (S) dihubungkan ke input Reset (R) pada RS flip-flop menggunakan sebuah inverter sehingga terbentuk input atau masukan baru yang diberi nama input Data (D). Dengan kondisi tersebut maka RS flip-flop berubah menjadi Data Flip-Flop (D-FF). Pada perkembanganya D flip flop ini ditambahkan dengan input atau masukan control berupa enable/clock seperti ditunjukan pada gambar berikut. 

Gambar Data Flip-FLop Dengan Enable/Clock.

 

Gambar diatas memperlihatkan Data flip-flop yang dilengkapi denganmasukan enable/clock. Fungsi input enable/clock diatas adalah untuk menahan data masukan pada jalur Data (input D) agar tidak diteruskan ke rangkaian RS flip-flop. Prinsip kerja dari rangkaian Data flip-flop dengan clock diatas adalahsebagai berikut. Apabila input clock berlogika 1 “High” maka input pada jalur data akan di teruskan ke rangkaian RS flip flop, dimana pada saat input jalur Data 1 “High” maka kondisi tersebut adalah Set Q menjadi 1 “High” dan pada saat jalur Data diberikan input 0 “Low” maka kondisi yang terjadi adala Reset Q menjadi 0 “Low”. Kemudian Pada saat input Clock berlogika rendah maka data output pada jalur Q akan ditahan (memori 1 bit) walaupun logika pada jalur input Data berubah. Kondisi inilah yang disebut sebagai dasar dari memor 1 bit. Untuk lebih jelasnya dapat dilihat pada tabel Data flip-flop berikut.

Dari tabel kebenaran diatas terlihat bahwa Data flip-flop merupakan dasar dari pembuatan memori digital 1 bit. Data Flip-flop sering juga disebut sebagai D-latch.o

10. Relay

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.

Ada besi atau yang disebut dengan nama inti besi dililit oleh sebuah kumparan yang berfungsi sebagai pengendali.  Sehingga kumparan kumparan yang diberikan arus listrik maka akan menghasilkan gaya elektromagnet.  Gaya tersebut selanjutnya akan menarik angker untuk pindah dari biasanya tutup ke buka normal.  Dengan demikian saklar menjadi pada posisi baru yang biasanya terbuka yang dapat menghantarkan arus listrik.  Ketika armature sudah tidak dialiri arus listrik lagi maka ia akan kembali pada posisi awal, yaitu normal close.

Fitur:

1. Tegangan pemicu (tegangan kumparan) 5V

2. Arus pemicu 70mA

3. Beban maksimum AC 10A @ 250 / 125V

4. Maksimum baban DC 10A @ 30 / 28V

5. Switching maksimum

11. Motor DC

Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti

Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.

12. Lampu


Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor.

13. IC OP AMP 

Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.

b. Inverting dan non inverting amplifier



Op-Amp memiliki beberapa karakteristik, diantaranya:

a. Penguat tegangan tak berhingga (AV = )

b. Impedansi input tak berhingga (rin = )

c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = )

d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)

Grafik input dan output op amp

14. Battery

Spesifikasi battery : 12 V

Baterai adalah perangkat yang terdiri dari satu atau lebih sel elektrokimia dengan koneksi eksternal yang disediakan untuk memberi daya pada perangkat listrik seperti senter, ponsel, dan mobil listrik. Ketika baterai memasok daya listrik, terminal positifnya adalah katode dan terminal negatifnya adalah anoda. Terminal bertanda negatif adalah sumber elektron yang akan mengalir melalui rangkaian listrik eksternal ke terminal positif. Ketika baterai dihubungkan ke beban listrik eksternal, reaksi redoks mengubah reaktan berenergi tinggi ke produk berenergi lebih rendah, dan perbedaan energi-bebas dikirim ke sirkuit eksternal sebagai energi listrik. Secara historis istilah "baterai" secara khusus mengacu pada perangkat yang terdiri dari beberapa sel, namun penggunaannya telah berkembang untuk memasukkan perangkat yang terdiri dari satu sel. Kutub yang bertanda positif menandakan bahwa memiliki energi potensial yang lebih tinggi daripada kutub bertanda negatif. Kutub bertanda negatif adalah sumber elektron yang ketika disambungkan dengan rangkaian eksternal akan mengalir dan memberikan energi ke peralatan eksternal. Ketika baterai dihubungkan dengan rangkaian eksternal, elektrolit dapat berpindah sebagai ion didalamnya, sehingga terjadi reaksi kimia pada kedua kutubnya. Perpindahan ion dalam baterai akan mengalirkan arus listrik keluar dari baterai sehingga menghasilkan kerja. Meski sebutan baterai secara teknis adalah alat dengan beberapa sel, sel tunggal juga umumnya disebut baterai.

15. Transistor NPN

Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Transistor dapat berfungsi semacam kran listrik, di mana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya. Kapasitor NPN memiliki simbol seperti gambar di bawah ini:
Simbol Transistor NPN BC547


Terdapat rumus rumus dalam mencari transistor seperti rumus di bawah ini:

Rumus dari Transitor adalah :

hFE = iC/iB

dimana, iC = perubahan arus kolektor 

iB = perubahan arus basis 

hFE = arus yang dicapai


Rumus dari Transitor adalah :

Karakteristik Input

Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.

Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.

 Pemberian bias 
        Ada beberapa macam rangkaian pemberian bias, yaitu: 
 1. Fixed bias yaitu, arus bias IB didapat dari VCC yang dihubungkan ke kaki B melewati tahanan R seperti gambar 58. Karakteristik Output.


2.Self Bias adalah arus input didapatkan dari pemberian tegangan input VBB seperti gambar 60.


Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.

Gelombang I/O Transistor
                    
16. OP-AMP


Simbol 
 
Berfungsi sebagai penguat atau pembanding tegangan input dengan output.

 

 

Karakteristik IC OpAmp

  • Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
  • Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
  • Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
  • Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
  • Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
  • Karakteristik tidak berubah dengan suhu
                                                                           

Karakteristik IC OpAmp

  • Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
  • Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
  • Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
  • Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
  • Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
  • Karakteristik tidak berubah dengan suhu

Inverting Amplifier


 Rumus:

NonInverting

 Rumus:

Komparator

Rumus:

Adder

Rumus:

Bentuk Gelombang

4. Percobaan [Kembali]

A. prosedur percobaan

1. Siapkan semua alat dan bahan yang diperlukan

2. Disarankan agar membaca datasheet setiap komponen

3. Cari komponen yang diperlukan di library proteus

4. Rangkailah Rangkaian sesuai dengan gambar dibawah

5. jika ingin mensimulasikan jangan lupa masukkan libarary sensor 

6. Coba dijalankan rangkaian apabila ouput hidup/berputar (motor dc) maka rangkaian bisa digunakan


B. Rangkaian Simulasi

Pada Aplikasi Kontrol Hidroponik Kangkung Dirumah Tanaman ini kami menggunakan 5 buah sensor, yaitu : Soil Moisture, LM35, LDR, PIR, dan Touch Sensor.

A. KONTROL KELEMBABAN TANAH TANAMAN

Untuk Sensor Soil Moisture, resistansi yang menjadi acuan adalah 60% dimana saat resistansi diatas 60% mengindikasikan tanah lembab, sedangkan resistansi dibawah 60% mengindikasikan tanah kering. Pada Sensor LM35, suhu yang menjadi acuan adalah 27 derajat, dimana saat suhu diatas 27 derajat dianggap sebagai suhu ideal untuk menyiram tanaman, sedangkan suhu dibawah 27 derajat dianggap kurang ideal.

Kondisi 1 : Tanah Kering dan Suhu <= 27 derajat

Pada kondisi ini sensor kelembapan akan mendeteksi tanah kering yang dilihat pada resistansi 49%, dimana sensor akan mengeluarkan output tegangan yang tidak stabil sehingga harus diumpankan terlebih dahulu ke rangkaian penyearah yang mana kita akan mendapatkan tegangan output dari penyearah sebesar +2,02 V. Tegangan output dari penyearah ini kemudian diumpankan ke ragkaian op-amp detector non-inverting dengan tegangan pembanding sebesar +2,07 V, sehingga output dari rangkaian detector bernilai negative saturasi (-15V) yang kemudian dimasukkan ke kaki B pada IC Decoder 74247 dan juga ke kaki R-S pada D Flip-Flop. Karna input pada kaki R berlogika 0 dan pada kaki S berlogika 1 (melewati inverter) maka D Flip-Flop berada pada kondisi SET yang artinya output pada kaki Q akan berlogika 1 yang kemudian dihubungkan ke resistor 10k ohm dan diperoleh output sebesar +0,71 V yang dihubungkan ke transistor Q5 yang mengaktifkan transistor. Karna transistor Q5 aktif, maka tegangan sebesar +5V pada relay 4 akan mengalir ke kumparan lalu ke kaki collector dan diumpankan ke kaki emitter lalu ke ground. Karena ada arus yang melewati kumparan relay 5, maka relay menjadi aktif dan switch berpindah dari kanan ke kiri sehingga relay 5 dan transistor Q6 terhubung. 

Karena suhu yang terbaca oleh sensor LM35 lebih kecil dari 27 derajat yaitu 26 derajat maka sensor akan mengeluarkan output +0,35V yang kemudian diumpankan ke kaki positif dari rangkaian op-amp detector non-inverting sehingga diperoleh output tengangan bernilai negative saturasi yang dihubungkan ke kaki A pada IC 74257 dan ke resistor 6. Output pada resistor 6 sebesar -14,8V kemudian dihubungkan ke kaki transistor Q6 yang menyebabkan transistor tidak aktif sehingga tidak ada arus yang mengalir dari kaki collector ke emitter. Karena transistor Q6 tidak aktif maka relay 5 tidak aktif sehingga switch tetap di posisi kanan yang menghubungkan tegangan +12V ke resistor lalu ke LED kuning dan ke ground. Karena tidak ada tegangan yang masuk ke motor, maka pomoa air tidak aktif.

Karena input pada kaki A dan B dari IC 74247 bernilai logika 0, maka pada layar 7-segment akan ditampilkan angka 0 yang artinya “Tanah Kering dan Suhu <= 27 Derajat”

Kondisi 2 : Tanah Kering dan Suhu >27 derajat

Pada kondisi ini sensor kelembapan akan mendeteksi tanah kering yang dilihat pada resistansi 49%, dimana sensor akan mengeluarkan output tegangan yang tidak stabil sehingga harus diumpankan terlebih dahulu ke rangkaian penyearah yang mana kita akan mendapatkan tegangan output dari penyearah sebesar +2,02 V. Tegangan output dari penyearah ini kemudian diumpankan ke ragkaian op-amp detector non-inverting dengan tegangan pembanding sebesar +2,07 V, sehingga output dari rangkaian detector bernilai negative saturasi (-15V) yang kemudian dimasukkan ke kaki B pada IC Decoder 74247 dan juga ke kaki R-S pada D Flip-Flop. Karna input pada kaki R berlogika 0 dan pada kaki S berlogika 1 (melewati inverter) maka D Flip-Flop berada pada kondisi SET yang artinya output pada kaki Q akan berlogika 1 yang kemudian dihubungkan ke resistor 10k ohm dan diperoleh output sebesar +0,71 V yang dihubungkan ke transistor Q5 yang mengaktifkan transistor. Karna transistor Q5 aktif, maka tegangan sebesar +5V pada relay 4 akan mengalir ke kumparan lalu ke kaki collector dan diumpankan ke kaki emitter lalu ke ground. Karena ada arus yang melewati kumparan relay 5, maka relay menjadi aktif dan switch berpindah dari kanan ke kiri sehingga relay 5 dan transistor Q6 terhubung. 

Karena suhu yang terbaca oleh sensor LM35 lebih besar dari 27 derajat yaitu 28 derajat maka sensor akan mengeluarkan output +0,37V yang kemudian diumpankan ke kaki positif dari rangkaian op-amp detector non-inverting sehingga diperoleh output tengangan bernilai positive saturasi yang dihubungkan ke kaki A pada IC 74257 dan ke resistor 6. Output pada resistor 6 sebesar +0,72V kemudian dihubungkan ke kaki transistor Q6 yang menyebabkan transistor  aktif sehingga  ada arus yang mengalir dari kaki collector ke emitter. Karena transistor Q6 aktif maka relay 5 aktif sehingga switch berpindah  posisi dari kanan ke kiri yang menghubungkan tegangan +12V ke motor lalu ke ground. Karena ada tegangan yang masuk ke motor, maka pomoa air aktif menyiram tanaman.

Karena input pada kaki A berlogika 1 dan B dari IC 74247 bernilai logika 0, maka pada layar 7-segment akan ditampilkan angka 1 yang artinya “Tanah Kering dan Suhu > 27 Derajat”

Kondisi 3 : Tanah Lembab dan Suhu <=27

Pada kondisi ini sensor kelembapan akan mendeteksi tanah lembab yang dilihat pada resistansi 51%, dimana sensor akan mengeluarkan output tegangan yang tidak stabil sehingga harus diumpankan terlebih dahulu ke rangkaian penyearah yang mana kita akan mendapatkan tegangan output dari penyearah sebesar +2,12 V. Tegangan output dari penyearah ini kemudian diumpankan ke ragkaian op-amp detector non-inverting dengan tegangan pembanding sebesar +2,07 V, sehingga output dari rangkaian detector bernilai positive saturasi (+15V) yang kemudian dimasukkan ke kaki B pada IC Decoder 74247 dan juga ke kaki R-S pada D Flip-Flop. Karna input pada kaki R berlogika 1 dan pada kaki S berlogika 0 (melewati inverter) maka D Flip-Flop berada pada kondisi RESET yang artinya output pada kaki Q akan berlogika 0 yang kemudian dihubungkan ke resistor 10k ohm dan diperoleh output sebesar 0 V yang dihubungkan ke transistor Q5 yang meenyebabkan transistor tidak aktif. Karna transistor Q5 tidak aktif, maka tegangan sebesar +5V pada relay 4 tidak mengalir ke kumparan. Karena tidak ada arus yang melewati kumparan relay 5, maka relay tidak aktif dan switch tidak berpindah dari kanan ke kiri sehingga relay 5 dan transistor Q6 tidak terhubung. 

Karena suhu yang terbaca oleh sensor LM35 lebih kecil dari 27 derajat yaitu 26 derajat maka sensor akan mengeluarkan output +0,35V yang kemudian diumpankan ke kaki positif dari rangkaian op-amp detector non-inverting sehingga diperoleh output tengangan bernilai negative saturasi yang dihubungkan ke kaki A pada IC 74257 dan ke resistor 6. Output pada resistor 6 sebesar -14,8V kemudian dihubungkan ke kaki transistor Q6 yang menyebabkan transistor tidak aktif sehingga tidak ada arus yang mengalir dari kaki collector ke emitter. Karena transistor Q6 tidak aktif maka relay 5 tidak aktif sehingga switch tetap di posisi kanan yang menghubungkan tegangan +12V ke resistor lalu ke LED kuning dan ke ground. Karena tidak ada tegangan yang masuk ke motor, maka pomoa air tidak aktif.

Karena input pada kaki A dan B dari IC 74247 bernilai logika 0, maka pada layar 7-segment akan ditampilkan angka 2 yang artinya “Tanah Lembab dan Suhu <= 27 Derajat”

Kondisi 4: Tanah Lembab dan Suhu >27 Derajat

Pada kondisi ini sensor kelembapan akan mendeteksi tanah lembab yang dilihat pada resistansi 51%, dimana sensor akan mengeluarkan output tegangan yang tidak stabil sehingga harus diumpankan terlebih dahulu ke rangkaian penyearah yang mana kita akan mendapatkan tegangan output dari penyearah sebesar +2,12 V. Tegangan output dari penyearah ini kemudian diumpankan ke ragkaian op-amp detector non-inverting dengan tegangan pembanding sebesar +2,07 V, sehingga output dari rangkaian detector bernilai positive saturasi (+15V) yang kemudian dimasukkan ke kaki B pada IC Decoder 74247 dan juga ke kaki R-S pada D Flip-Flop. Karna input pada kaki R berlogika 1 dan pada kaki S berlogika 0 (melewati inverter) maka D Flip-Flop berada pada kondisi RESET yang artinya output pada kaki Q akan berlogika 0 yang kemudian dihubungkan ke resistor 10k ohm dan diperoleh output sebesar 0 V yang dihubungkan ke transistor Q5 yang meenyebabkan transistor tidak aktif. Karna transistor Q5 tidak aktif, maka tegangan sebesar +5V pada relay 4 tidak mengalir ke kumparan. Karena tidak ada arus yang melewati kumparan relay 5, maka relay tidak aktif dan switch tidak berpindah dari kanan ke kiri sehingga relay 5 dan transistor Q6 tidak terhubung. 

Karena suhu yang terbaca oleh sensor LM35 lebih besar dari 27 derajat yaitu 28 derajat maka sensor akan mengeluarkan output +0,37V yang kemudian diumpankan ke kaki positif dari rangkaian op-amp detector non-inverting sehingga diperoleh output tengangan bernilai positive saturasi yang dihubungkan ke kaki A pada IC 74257 dan ke resistor 6. Output pada resistor 6 sebesar +0,66V kemudian dihubungkan ke kaki transistor Q6 yang menyebabkan transistor tidak aktif sehingga tidak  ada arus yang mengalir dari kaki collector ke emitter. Karena transistor Q6 tidak aktif maka relay 5 juga tidak aktif sehingga switch tetap di kanan yang menghubungkan tegangan +12V ke resistor lalu ke LED kuning dan ke ground. Karena tidak ada tegangan yang masuk ke motor, maka pomoa air tidak aktif.

Karena input pada kaki A berlogika 1 dan B dari IC 74247 bernilai logika 1, maka pada layar 7-segment akan ditampilkan angka 3 yang artinya “Tanah Lembab dan Suhu > 27 Derajat”.

B. SISTEM PENGATURAN PINTU OTOMATIS DIRUMAH TANAMAN DAN PEMUPUKAN OTOMATIS

Pada sistem pengaturan pintu otomatis, kita menggunakan sensor PIR dimana sensor PIR dapat mendeteksi keberadaan seseorang yang melewati sensor tersebut melalui radiasi inframerah yang diterimanya. Sensor PIR ini diletakkan  diatas pintu masuk. Dan untuk pemupukan otomatis kita akan menggunakan sensor touch dimana sensor ini akan aktif apabila kita sentuh yang terletak di samping pintu, dimana saat kita sentuh maka pupuk cair otomatis akan disemprotkan ke tanaman

Kondisi 1, Sensor PIR aktif : Saat seseorang akan memasuki rumah tanaman, maka sensor PIR akan mendeteksi adanya pergerakan seseorang sehingga sensor PIR akan aktif dan kaki Vout akan mengeluarkan tegangan sebesar 5V lalu diumpankan menuju input X1 multiplexer. Seperti yang diketahui fungsi dari multiplexer adalah untuk meneruskan beberapa sinyal yang masuk menjadi 1 sinyal keluaran, yang diatur oleh PIN Select, dimana pada pin select yang aktif adalah PIN A dan yang mati adalah PIN B. Berdasarkan tabel kebenaran multiplexer dapat terlihat jika pin A dan B aktif maka sinyal yang akan diteruskan adalah yang dari input X1 dan Y1. Karena X1 aktif maka akan diteruskan melalui output X sebesar 1.32V. Tegangan tersebut kemudian diumpankan menuju kaki base transistor, transistor bekerja dengan fixed bias, terlihat pada rangkaian nilai VBE nya adalah 1.32V maka power dapat mengalirkan arus ke relay karena syarat nilai VBE adalah besar dari 0.7V. karena arus mengalir pada relay, maka relay akan berpindah posisi dan arus mengalir pada baterai dan motor bergerak. Pada rangkaian ini motor berperan sebagai pintu otomatis yang terbuka.

Kondisi 2, Sensor Touch Aktif : Saat seseorang akan memasuki rumah tanaman, pintu terbuka, dan ingin menyemprotkan pupuk cair, maka kita dapat menekan sensor touch sehingga sensor touch akan aktif dan kaki Vout akan memgeluarkan tegangan sebesar 5V lalu diumpankan menuju input Y1 multiplexer. Seperti yang diketahui fungsi dari multiplexer adalah untuk meneruskan beberapa sinyal yang masuk menjadi 1 sinyal keluaran, yang diatur oleh PIN Select, dimana pada pin select yang aktif adalah PIN A dan yang mati adalah PIN B. Berdasarkan tabel kebenaran multiplexer dapat terlihat jika pin A dan B aktif maka sinyal yang akan diteruskan adalah yang dari input X1 dan Y1. Karena Y1 aktif maka akan diteruskan melalui output Y sebesar 4.85V. Tegangan tersebut kemudian diumpankan menuju R3, lalu diumpankan menuju kaki base transistor, transistor bekerja dengan self bias, terlihat pada rangkaian nilai VBE nya adalah 0.78V maka power dapat mengalirkan arus ke relay karena syarat nilai VBE adalah besar dari 0.7V. karena arus mengalir pada relay, maka relay akan berpindah posisi dan arus mengalir pada baterai dan motor bergerak. Pada rangkaian ini motor berperan sebagai sprayer otomatis pupuk yang akan menyemprotkan pupuk ke tanaman

C. SISTEM PENGATURAN ATAP OTOMATIS DIRUMAH TANAMAN 

Pada sistem pengaturan Atap otomatis, kita menggunakan sensor LDR dimana sensor LDR dapat mendeteksi banyaknya Matahari yang masuk sensor tersebut melalui radiasi inframerah yang diterimanya. Sensor PIR ini diletakkan  diatap rumah tanaman. 

Saat ada kondisi matahari kita dapat tegangan sebesar 0,75 V dimana tegangan cukup untuk mengaktifkan transistor sehingga tegangan 15V masuk kekaki Resistor R4 masuk ke relay 7 yang diparalelkan dengan relay 9 masuk kekaki kolektor transistor Q1 lalu outputnya kekaki emitor lalu keground, karena ada arus yang mengalir dari relay, relay menjadi aktif switch berpindah dari kanan kekiri, relay 8 juga aktif karena diparalelkan dengan relay 7 dan relay 8 dan relay 10 juga aktif sehingga switch berpindah dari kiri kekanan relay 8 terjadi pemutusan loop sehingga tegangan 15 V mengalir kerelay 7 masuk keswitch masuk kemotor dengan  tegangan 14,9 v dimana motor berputar kekiri menyebabkan atap terbuka sehinggga kangkong bisa berfotosintesis.


C. Video

5. Download File [Kembali]
   
    Download HTML klik disini
    Download rangkaian Simulasi proteus klik disini
    Download video klik disini
    Download Datasheet Resistor klik disini
    Download Datasheet Dioda klik disini
    Download Datasheet Relay klik disini
    Download Datasheet Transistor klik disini
    Download Datasheet LED klik disini
    Download Datasheet Lampu klik disini
    Download Datasheet Motor klik disini
    Download Datasheet OP-AMP klik disini
    Download Datasheet Baterai klik disini
    Download Datasheet Multiplexer IC 4052 klik disini
    Download Datasheet Demultiplexer IC 4052 klik disini
    Download Datasheet Touch sensor klik disini
    Download Datasheet PIR sensor klik disini
    Download Datasheet Soil Mosture sesor klik disini
    Download Datasheet LM35 sesor klik disini
    Download Datasheet LDR sesor klik disini
    Download Library Touch sensor  klik disini
    Download Library PIR sensor klik disini
    Download Library Soil Mosture sesor klik disini

Komentar

Postingan populer dari blog ini

TUGAS BESAR: KONTROL TANAMAN BAYAM PADA GREEN HOUSE

MODUL 1 : 8 x SWITCH SPDT DAN LCD

MODUL 2 : Kontrol Putaran Motor Stepper